

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: PROBABILITY&STATISTICS(18HS0835) **Branches: MECH, CSE** Year &Sem: II-B.Tech & I-Sem Regulation: R18

UNIT -I

1. a) If
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{1}{4} P(A \cap B) = \frac{1}{8}$ then $P(A \cup B)$.

b) If
$$P(A^c) = \frac{3}{8} P(B^c) = \frac{1}{2}$$
 and $P(A \cap B) = \frac{1}{4}$ then find $P(\frac{A}{B})$ [2 M]

[2 M]

c) State Bayes theorem.

d) If the Probability density of a random variable is given by $f(x) = \begin{cases} k(1-x^2), & \text{for } 0 < x < 1 \\ 0, & \text{elsewhere} \end{cases}$

find the value of k. [2 M]

e) A random variable X has the following probability function

X	1	2	3	4	5	6	7	8
P(x)	1/36	2/36	3/36	4/36	5/36	6/36	7/36	8/36

find the value of $P(x \le 2)$ [2 M]

- 2. a) A class consists of 6 girls and 10 boys. If a committee of 3 is chosen at random from the class, find the Probability that (i)3 boys are selected (ii)exactly 2 girls are selected [4 M]
 - b) Two cards are selected at random from 10 cards numbered 1 to 10. Find the probability that the sum is even if (i) The two cards are drawn together. (ii) The two cards drawn one after other with replacement. [6 M]
- 3. a) Three students A,B,C are in running race. A and B have the same Probability of winning and each is twice as likely to win as C. Find the Probability that B or C wins [5 M]
 - b) Determine (i) P(B/A) (ii) P(A/B) if A and B are events with $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$, $P(A \cup B) = \frac{1}{2}$. [5 M]
- 4. a) In a certain town 40% have brown hair, 25% have brown eyes and 15% have both brown hair and brown eyes. A person is selected at random from the town.
 - i) If he has brown hair, what is the probability that he has brown eyes also?
 - ii)If he has brown eyes, determine the probability that he does not have brown hair? [6 M]
 - b) The probability that students A,B,C,D solve the problem are $\frac{1}{3}$, $\frac{2}{5}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively If
 - all of them try to solve the problem, what is the probability that the problem is solved. [4M]
- 5. Two dice are thrown. Let A be the event that the sum of the point on the faces is 9. Let B be the event that at least one number is 6. Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$ (iii) $P(A^c \cup B^c)$ (iv) $P(A^c \cap B^c)$

$$(v) P(A \cap B^c)$$
 [10 M]

- 6. In a certain college 25% of boys and 10% of girls are studying mathematics. The girls Constitute 60% of the student body. (a) What is the probability that mathematics is being studied? (b) If a student is selected at random and is found to be studying mathematics, find the probability that the student is a girl? (c) a boy [10 M]
- 7. Two dice are thrown. Let X assign to each point (a,b) in S the maximum of its numbers i.e, X(a,b) = max(a,b). Find the probability distribution. X is a random variable with $X(s) = \{1,2,3,4,5,6\}$. Also find the mean and variance of the distribution. [10 M]

8. A random variable X has the following probability function

X	0	1	2	3	4	5	6	7
P(x)	0	K	2K	2K	3K	\mathbf{K}^2	$2K^2$	$7K^2+K$

Determine (i) K (ii) Evaluate $P(X \ge 6)$ and P(0 < X < 5) (iii) if $P(X \le K) > 1/2$, find the minimum value of K (iv) variance.

[10 M]

[5 M]

- 9. A) Find the mean and variance of the uniform probability distribution given by $f(x) = \frac{1}{x}$ for x = 1, 2, ..., n.
 - b) If a random variable has a Probability density f(x) as $f(x) = \begin{cases} 2e^{-2x}, & \text{for } x > 0 \\ 0, & \text{for } x \le 0 \end{cases}$

Find the Probabilities that it will take on a value (i)Between 1 & 3 (ii)Greater than 0.5 [5 M]

10. Probability density function of a random variable X is $f(x) = \begin{cases} \frac{1}{2} \sin x, & \text{for } 0 \le x \le \pi \\ 0, & \text{elsewhere} \end{cases}$. Find the mean,

mode and median of the distribution and also find the probability between 0 and $\frac{\pi}{2}$. [10 M]

UNIT-II

1. a) Define Binomial distribution.

[2 M]

b) A fair coin is tossed six times. Find the Probability of getting four heads.

[2 M]

c) Define Poisson distribution.

[2 M]

d) If a bank received on the average 6 bad cheques per day, find the probability that it will receive 4 bad cheques on any given day.

[2 M]

e) Define Normal distribution.

[2 M]

2. a) Derive mean and variance of Binomial distribution.

[6 M]

b) 20% of items produced from a factory are defective. Find the probability that in a sample of 5 chosen at random (i) one is defective

(ii) p(1 < x < 4)

[4 M]

3. a) Fit a Binomial distribution to the following frequency distribution:

[8 M]

х	0	1	2	3	4	5
f	2	14	20	34	22	8

b) The mean and variance of a binomial distribution are 4 and $\frac{4}{2}$. Find $p(X \ge 1)$.

[2M]

- a) Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii) 5 girls(iii) either 2 or 3 boys. Assume equal probabilities for boys and girls. [6M]
 - b) Two dice are thrown five times. Find the probability of getting 7 as sum
 - i) at least once

(ii) p(1 < x < 5)

[4M]

5. a) Derive mean and variance of poisson distribution.

[6 M]

- b) If 2% of light bulbs are defective. Find the probability that (i) At least one is defective
- (ii) p(1 < x < 8) in a sample of 100

[4 M]

6. a) Fit a Poisson distribution to the following data

[8 M]

	f	142	156	69	27	6	1	400
b) If the me	an of a	Poisso	on distri	bution	is 1.8 th	nen fin	d p(X)	(X>1).

[2M]

- 7. a) An insurance agent policies of 5 men all of identical age and good in health. The probability that a man of this age will be alive 30 years is 2/3. Find the probability that in 30 years.
 - (i) At least one man (ii) Almostthree will be alive

[6M]

b) If X is a Poisson variate such that $3P(X=4) = \frac{1}{2}P(X=2) + p(X=0)$,

find (i) the mean (ii) $P(X \le 2)$

[4 M]

Derive mean and variance of Normal distribution.

- [10 M]
- 9. Find the mean and variance of a Normal distribution in which 7% of items are under 35 and 89% are under 63.

[10 M]

10. In a sample of 1000 cases, the mean of certain test is 14 and standard deviation is 2.5. Assuming the distribution to be normal find (i) How many students score between 12 and 15. (ii) How many students score above 18? (iii) How many students score below 18? [10 M]

UNIT-III

1. a) The weights of 6 competitors in a game are given below 58,62,56,63,55,61kgs.

Find arithmetic mean of weight of competitors.

[2M]

b) Find the median of the following values 26,8,6,12,15,32.

[2 M]

c) Obtain mode of the values 10,12,15,20,12,16,18,15,12,10,16,20,12,24.

[2 M]

d) Write the formulas for correlation, rank correlation

[2 M]

e) Write the formulas for the lines of regression X on Y and Y on X.

[2 M]

2. a) Find arithmetic mean to the following data using step deviation method

[5M]

	Marks	10-20	20-30	30-40	40-50	50-60
	frequency	5	8	25	22	10
٦.	1.1 11	, ,1 C 11 '	1 /			F 73 43

b) Find the median to the following data

X	5	8	11	14	17	20	23
f	2	8	12	20	10	6	3

3. a) Find the median to the following data

[5M]

Class intervals	40-50	50-60	60-70	70-80	80-90
frequency	5	12	23	8	2

b) Find arithmetic mean to the following data

X	1	2	3	4	5
f	5	8	10	12	6

4. a) Find mode to the following data

[5M]

٠.	uji ilia ilioa	e to the folio	wing data					
	X	0-10	10-20	20-30	30-40	40-50	50-60	60-70
	F	4	13	21	44	33	22	7

b) The first four moments of a distribution about the value 5 of the variables are 2,20,40 and 50. Calculate mean, variance, β_1 and β_2 of the distribution. [5M]

5. Compute Karl Pearson and Bowley's coefficient of Skewness to the following data [5M]

Class intervals	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
frequency	2	6	11	20	40	75	45	25	18	8

6. Compute the first four central moments to the following data and also find Sheppard's correction,

 β_1 and β_2

[5M]

Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70
intervals							
frequency	2	8	12	40	20	15	3

7. a)Calculate correlation coefficient to the following data

,										L J
X	10	15	12	17	13	16	24	14	22	20
Y	30	42	45	46	33	34	40	35	39	38

b) Obtain the rank correlation coefficient for the following data:

) several une remai contratere contratere no remo remo (m. g. several contratere)													
X	48	60	72	62	56	40	39	52	30					
Y	62	78	65	70	38	54	60	32	31					

8. a)Ten competitors in a musical test were ranked by the three judges A,B and C in the following order:

Ranks by A	1	6	5	10	3	2	4	9	7	8
Ranks by B	3	5	8	4	7	10	2	1	6	9

Ranks by C 6 4 9 8 1 2 3 10 3 7	Ranks by C 6	6 4	9	8	1	2	3	10	5	7
---	--------------	-----	---	---	---	---	---	----	---	---

Using rank correlation coefficient method, discuss which pair of judges has the nearest approach to common likings in music.

b) If the two lines of regression are 4X-5Y+30=0 and 20X-9Y-107=0 which of these is the line of regression of X on Y. Find r and σ_{v} when $\sigma_{x} = 3$ [5M]

9. a) Obtain the rank correlation coefficient for the following data:

[5M]

X	68	64	75	50	64	80	75	40	55	64
Y	62	58	68	45	81	60	68	48	50	70

b) Find two regression equations from the following data:

[5M]

X	10	25	34	42	37	35	36	45
Y	56	64	63	58	73	75	82	77

11. a) Calculate the correlation coefficient for the following heights(in inches) of fathers(X) and their sons(Y)

[6M]

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

b) From the following regression equations, calculate \overline{X} , \overline{Y} and r 20X-9Y=107, 4X-5Y=-33 [4M]

<u>UNIT –IV</u>

1. a) write normal equations to y = ax + b

[2M]

b) write normal equations to $y = ax^2 + bx + c$

[2M]

c) Define parameters statistics

[2M]

d) Define Null hypothesis, Alternative hypothesis.

[2M]

e) If n = 100, $\sigma = 5.1$, x = 21.6 construct 95% confidence interval for population mean μ .

[2M]

2. a)By method of least squares fit a straight line to the following data

[5M]

X	1	2	3	4	5
y	14	27	40	55	68

b) Fit a second degree polynomial to the following data by method of least squares

[5M]

Ī	X	0	1	2	3	4
	y	1	1.8	1.3	2.5	6.3

3. a) Fit a parabola to the data given below

[5M]

X	1	2	3	4	5 4
Y	10	12	8	10	14

b) Obtain a relation of the form $y = ab^x$ for the following data by method of least squares

X	2	3	4	5	6
Y	8.3	15.4	33.1	65.2	127.4

4. a) Find the curve of best fit of the type $y = ae^{bx}$ to the following data by method of least squares

[5M]

[5M]

X	1	5	7	9	12
Y	10	15	12	15	21

b) Fit a straight line y = ax + b for the following data

[5M]

X	6	7	7	8	8	8	9	9	10
У	5	5	4	5	4	3	4	3	3

5. a) Fit a $y = ax^b$ to the following data, also calculate y(2.5)

[5M]

X	1	2	4	6
y	6	4	2	2

b) Fit a second degree polynomial to the following data by method of least squares

[5M]

X	0	1	2	3	4
У	1	5	10	22	38

- 6. a) A sample of 400 items is taken from a population whose standard deviation is 10. The mean of the sample is 40. Test whether the sample has come from a population with mean 38.
 - b) The means of two large samples of sizes 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches.
- 7. a) It is claimed that a random sample of 49 tyres has a mean life of 15200 km. This sample was

drawn from a population whose mean is 15150kms and standard deviation of 1200 km. Test the significance at 0.05 level.

b)Samples of students were drawn from two universities and from their weights in kilograms, mean and standard deviations are calculated and shown below. Make alarge sample test to test the significance of the difference between the means. [5M]

	Mean	S.D	Size of the sample
University A	55	10	400
University B	57	15	100

- 8. a) In a random sample of 125 cool drinkers 68 said they prefer thumsup to pepsi. Test thus null hypothesis P = 0.5 against the alternative hypothesis is P > 0.5[5M]
 - b) On the basis of their total scores, 200 candidates of a civil service examination are divided in to two groups, the upper 30% and the remaining 70% consider the first question of the examination. Among the first group,40 had correct answer, where as among the second group, 80 had correct answer. On the basis of these results, can one conclude that the first question is not good at discriminating ability of the type being examined here? [5M]
- 9. a) A die was thrown 9000 times and of these 3220 yielded a 3or 4. Is this consistent with the hypothesis that the die was unbiased? [5M]
 - b) In two large populations, there are 30%, and 25% respectively of fair haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations.
- 10. a) A random sample of size 50 has standard deviation 11.8 drawn from a normal population. can we assume that the sample has been drawn from the population with S.D 10. [5M]
 - b) Two random samples of sizes 100 each are drawn from two populations with the standard deviations 2.823 and 1.548. Test the significance difference between the sample standard deviations, if the population standard deviation is 2. [5M]

UNIT-V

1. a) Define degrees of freedom.

[2M]

b) Define Student's t-test.

[2M]

c) Write the formula for Paired t-test.

[2M]

d) Write the formula for Student's t-test for difference of means.

[2M]

e) Define Chi-square test.

[2M]

[5M]

2. a) A sample of 26 bulbs gives a mean life of 990 hours with a S.D of 20 hours. The manufacturer claims that the mean life of bulbs is 1000 hours. Is the sample not up to the standard. [5M]

b)A pair of dice are thrown 360 times and the frequency of each sum is indicated below:

Sum	2	3	4	5	6	7	8	9	10	11	12
Frequency	8	24	35	37	44	65	51	42	26	14	14

Would you say that the dice are fair on the basis of the chi-square test at 0.05 level of significant?

3. To examine the hypothesis that the husbands are more intelligent than the wives, an investigator took a sample of 10 couples and administered them a test which measures the I.Q. The results are as follows:

										L -
Husbands	117	105	97	105	123	109	86	78	103	107
Wives	106	98	87	104	116	95	90	69	108	85

Test the hypothesis with a reasonable test at the level of significant of 0.05 and also calculate Ftest.

- 4. A random sample of 10 boys had the following I.Q's: 70,120,110,101,88,83,95,98,107 and 100
 - a) Do these data support the assumption of a population mean I.Q of 100?

[10M]

- b) Find a reasonable range in which most of the mean I.Q values of samples of 10 boys lie.
- 5. a) Blood pressure of 5 women before and after intake of a certain drug are given below [5M]

Before	110	120	125	132	125
After	120	118	125	136	121

Test whether the significant change in blood pressure at 1% level of significance.

b. In one sample of 8 observations the sum of the squares of deviations of the sample values from the sample was 84,4 and in the other samples of 10 observations it was 102.6. Test whether this difference is significant at 5% level [5M]

6. Two random samples reveal the following results:

[10M]

Sample	Size	Sample Mean	Sum of squares of deviations from the mear				
1	10	15	90				
2	12	14	108				

Test whether the samples came from the same normal population.

7. The nicotine in milligrams of two samples of tobacco were found to be as follows.

[10M]

[5M]

Sample A	24	27	26	23	25	
Sample B	29	30	30	31	24	36

Can it be said that the two samples have come from the same normal population.

8. a) A die is thrown 264 times with the following results. Show that the die is biased.

$$(\psi^{2} = 11.07 \text{ at } 5 \text{ d.f } \& 5\% \text{ L.S})$$
Number | 1 | 2 | 3 | 4 | 5 | 6 |
on the die | Frequency | 40 | 32 | 28 | 58 | 54 | 52

b) Scores obtained in a shooting competition by 10 soldiers before and after intensive training are

Probability & Statistics

given below:

[5M]

Before	67	24	57	55	63	54	56	68	33	43
After	70	38	58	58	56	67	68	75	42	38

Test whether the intensive training is useful at 0.05 level of significance.

- 9. a) Find the maximum difference that we can expect with probability 0.95 between the mean of samples of sizes 10 and 12 from a normal population if their standard deviations are found to be 2 and 3 respectively. [5M]
 - b) The following table gives the classification of 100 workers according to sex and nature of work. Test whether the nature of work is independent of the worker ($\psi^2 = 3.84$ at 1d.f)

	Stable	Unstable	Total
Males	40	20	60
Females	10	30	40
Total	50	50	100

10.a) Samples of two types of electrical light blubs were tested for length of life and following data were obtained [5M]

	Type I	Type II
Sample numbers	8	7
Sample mean	1234 hrs	1036 hrs
Sample S.D	36 hrs	40 hrs

Is the difference in the means sufficient to warrant that type I is superior to type II regarding length

b) The number of automobile accidents per week in a certain community are as follows: 12, 8, 20, 2, 14, 10, 15, 6, 9, 4. Are these frequencies in agreement with the belief that accident conditions were the same during this 10 week period. [5M]

Branches:MECH,CSE,CS&IT

Probability & Statistics

Subject with Code: PROBABILITY & STATISTICS (18HS0835)

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

BIT BANK

Year &Sem: II-B.Tech	n&1-Sem		Regulation:	R18	
$P(A' \cap B) = $		<u>UNIT-I</u>		г	1
	B) $P(B)-P(A'\cap B)$	C) $P(A) - P(A \cap B)$	D) $P(B)-P(A)$	$(A \cap B)$	J
If X is a continuous ra	andom variable and $Y = a$	aX + b constant then $E(Y)$	')=	[]
		C) $aE(X)-b$	D) $aE(X)$		-
` '	n probability of getting 4	` '		[]
A) $\frac{1}{6}$	B) $\frac{5}{-}$	C) $\frac{1}{3}$	D) $\frac{2}{3}$		
0		3	3		
If $P(A) = \frac{1}{3}, P(B) =$	$\frac{1}{4}$, $P(A \cup B) = \frac{1}{3}$ then	P(B/A) =		[]
A) 1	B) $\frac{1}{6}$	C) $\frac{3}{4}$	$\frac{2}{}$		
	O	4	D) $\frac{2}{3}$		
	n probability of getting 5	1	2	[]
A) $\frac{1}{6}$	B) $\frac{5}{6}$	C) $\frac{1}{3}$	D) $\frac{2}{3}$		
The chance that a no	n-leap year contains 53	3 Mondays is	3	[]
A) $\frac{1}{7}$	B) $\frac{2}{7}$	1	D) 2	L	•
$\frac{1}{7}$	$\frac{1}{7}$	C) $\frac{1}{365}$	D) $\frac{2}{365}$		
If K is any constant the	en E(K) =			[]
A) 0	B) K	C) 1	D) -1		
Maximum value of t A) 0	he probability is B) 0.1	C) 1	D) -1	[]
·	y exclusive events then	, ,	<i>D)</i> -1	Г	1
		C) $P(A) - P(A \cap B)$	D) $P(B)-P($	$(A \cap B)$	ı
	$\frac{1}{4} \cdot P(A \cup B) = \frac{1}{3} \text{ then }$		-/-(-) - ([]
		√ A ⁷	2		
A) $\frac{1}{2}$	B) $\frac{1}{6}$	C) $\frac{3}{4}$	D) $\frac{2}{3}$		
If X and Y are indepe	ndent random variable th	then $E(XY) =$		[]
	B) $E(X) - E(Y)$	C) $E(X)$ $E(Y)$	D) $YE(X)$		
, , , , , ,	, , ,	g at least one six is	[]	
A) $\frac{7}{36}$	B) $\frac{10}{36}$	C) $\frac{11}{36}$	D) $\frac{5}{36}$		
		36	36	r	,
If K is any constant the A) 0	en V(K) = B) K		D) -1	[]
	and $P(A \cap B) = c$ then		-, ·	Г]

A) 1 a	D)1 b	C) 1 a	D) a	
· .	*	C) 1-C	<i>D)</i> С	1
		O(1 - p(A/O, p))	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$]
` ′	,	` ,	D) 1-(A B)	,
	•		D) 1]
•			г Г	1
]
` /	` /	• •	D) $4E(X)$	
÷	* *	Tuesdays is	[]
A) $\frac{1}{-}$	B) $\frac{2}{-}$	C) $\frac{1}{1}$	D) $\frac{2}{1}$	
7	7	365	365	
If A and B are mutually	exclusive events then z	$P(A \cap B)$	1	1
			D) $P(A)P(R)$	1
		,		1
		, ,	•]
` /	` /	` /	$D = a^2 V(X) + b^2$	1
		4.4	- l 5]
A) $\frac{'}{36}$	B) $\frac{10}{36}$	C) $\frac{11}{36}$	D) $\frac{5}{36}$	
• •				,
]
,	•	C) $1-c$	ו (ע	_
		C) on impossible	D) a finita]
	•	C) an impossible	ט) a milite	,
		C) () (D) 1 5(105)	J
	` ′	` ' ` ` '	$D) \ 1 - P(A B)$	_
If a dice is thrown then		4	[]
A) $\frac{1}{6}$	B) $\frac{3}{6}$	C) $\frac{1}{2}$	D) $\frac{2}{2}$	
O	O	3	3	1
			D) -1	J
,	*	,	,	
4	•	1		
A) $\frac{-}{7}$	B) - 7	C) ${365}$	D) ${365}$	
•	•			
If A and B are mutually	exclusive events then F	$P(A' \cup B') = \underline{\hspace{1cm}}$	[]
Δ) 1	R) 0	C) $1 - P(A \cap B)$	D) $P(B)-P(A\cap B)$)
If X and Y are indepen	dent random variable the	en $E(X+Y)=$	1]
A) $F(X) + F(Y)$	B) $F(X) - F(Y)$	F(X) $F(Y)$	$\frac{1}{D}$ $YF(X)$	1
11) 2(11): 2(1)	E_{ij}^{\prime} E_{ij}^{\prime}	e) 2(11) 2(1)	D , I D (Λ)	
		$P(B_A) = \underline{\hspace{1cm}}$	[]
A) $\frac{1}{4}$	B) $\frac{1}{-}$	C) 1	D) 0	
2	O			
If X is a continuous rar	ndom variable and $Y=2$.	X + 3 constant then $E(Y)$]
A) $2E(X)+3$	B) $E(X) + 3$	C) $2E(X)-3$	D) $2E(X)$	
Two dice are thrown. T	he probability of getting	at least one four is	[]
	A) $1-P(A \cup B)$ The property of an ev A) -1 and 0 If X is a random varial A) $E(X)$ The probability that a A) $\frac{1}{7}$ If A and B are mutually A) $P(A)+P(B)$ If X is a continuous ran A) $a^2V(X)+b$ Two dice are thrown. To A) $\frac{7}{36}$ If $P(A)=a$, $P(B)=b$ A) c An event that must occase A) a certain $P(A' \cup B') = $ A) $P(A)-P(A' \cap B)$ If a dice is thrown then A) $\frac{1}{6}$ If K is any constant then A) 0 The chance that a lear A) 0 The chance that a lear A) 1 If X and B are mutually A) 1	$P(A' \cap B') = \underline{\hspace{1cm}}$ A) $1 - P(A \cup B)$ B) $1 - P(A \cap B)$ The property of an event is always between A) -1 and 0 B) -1 and 1 If X is a random variable then $E(2X) = \underline{\hspace{1cm}}$ A) $E(X)$ B) $E(X)$ The probability that a leap year will have 53 A) $\frac{1}{7}$ B) $\frac{2}{7}$ If A and B are mutually exclusive events then $E(A) = E(A) = E(A)$ If X is a continuous random variable and $E(A) = E(A) = E(A) = E(A)$ A) $E(A) = E(A) = E(A) = E(A) = E(A) = E(A) = E(A)$ B) $E(A) = E(A) = E($	$P(A' \cap B') = \underline{\hspace{1cm}}$ A) $1 - P(A \cup B)$ B) $1 - P(A \cap B)$ C) $1 - P(A' \cap B)$ The property of an event is always between A) -1 and 0 B) -1 and 1 C) 0 and 1 If X is a random variable then $E(2X) = \underline{\hspace{1cm}}$ A) $E(X)$ B) $-E(X)$ C) $2E(X)$ The probability that a leap year will have 53 Tuesdays is A) $\frac{1}{7}$ B) $\frac{2}{7}$ C) $\frac{1}{365}$ If A and B are mutually exclusive events then $P(A \cap B) = \underline{\hspace{1cm}}$ A) $P(A) + P(B)$ B) $P(B) - P(A)$ C) 0 If X is a continuous random variable and $Y = aX + b$ constant then $V(Y \cap A) = A \cap A$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

				QUESTIC	IN BAIN.	L.
	30	B) $\frac{10}{36}$	C) $\frac{11}{36}$	D) $\frac{5}{36}$		
33.	If $P(A)=a$, $P(B)=b$	and $P(A \cap B) = c$ then	$P(A^c) = \underline{\hspace{1cm}}$		[]
	A) 1-a	B)1-b	C) 1-c	D) a		
34.	$P(A \cap B') = \underline{\hspace{1cm}}$				[1
		B) $P(B)-P(A'\cap B)$	C) $P(A) - P(A \cap B)$	D) $P(B)-P(A)$	(B)	-
35.	` ' ` ' ' '	probability of getting 2 of	` ' ` ' ' '		[]
	1	_	4	2	L	,
	A) $\frac{1}{6}$	B) $\frac{5}{6}$	C) $\frac{1}{3}$	D) $\frac{2}{3}$		
36.	Event b is said to be i	independent of event a	if $P(B/)=$	3	[]
			7 11	D) 1	L	,
	A) $P(A)P(B)$	B) $P(B)$	C) $P(A)$	D) 1		
37.	If K is any constant the	v(2K) =			[]
0,,	A) 0	B) K	— C) 1	D) -1	L	,
38.	·	event that must occur	is	ŕ	ſ	1
	A) 0	B) 0.1	C) 1	D) -1		•
39.	If A and B are independ	dent events then $P(A \cap$	B)=		[]
	A) $P(A)P(B)$	B) $P(B)-P(A)$	C) 0	D) $P(A')P(B)$)	
40.	If $P(A) = \frac{1}{4}, P(B) = \frac{1}{4}$	$\frac{1}{2}$, $P(A \cap B) = \frac{1}{4}$ then P	P(B/A) =]]	
	A) 1	B) $\frac{1}{6}$	C) $\frac{3}{4}$	D) $\frac{2}{3}$		
	A) 1	6	4	$\frac{1}{3}$		
41.	If X is a continuous rate	ndom variable and $Y=2$	X+3 constant then $V(Y)$	·)=	[]
	A) $4V(X)+3$	B) $4V(X)$	C) $2V(X)+3$	D) $4V(X)+9$		
42.	Two dice are thrown. T	The probability of getting	at least one four is		[]
				5		
	A) $\frac{7}{36}$ B) $\frac{10}{36}$	$\frac{1}{36}$	$\frac{1}{3}$	- 6		
43.		ble then $E(6X) = $			[]
		B) $-E(X)$		D) $36E(X)$		
44.		$P(A \cap B) = c$ then $P(A \cap B) = c$, ,	[]
				D) $a-b+c$	L	,

<u>UNIT-II</u>

1.	The mean of uniform pr	robability distribution	$f(x) = \frac{1}{n}$ for $x = 1, 2, 3$	3 <i>n</i> is	[]
	Δ) 0	$\mathbf{R}) \mathbf{n}^2$	C) $n-1$	D) $n+1$		

- 2. In a Poisson distribution if 2P(x=1)=P(x=2) then the variance is A) 0 B) 4 C) 2
 - D) -4
- 3. The mean of the Normal distribution is

	A) 0	Β) μ	C) μ^2	D) 1		
4.	•	l distribution is symmetr	•	ne	[]
	A) 0		C) $x \neq \mu$	D) 1		
5.	If mean of the binomial A) 8	distribution is 8 and vari B) 6	ance is 6, the mode of th C) 7	e distribution is D) 5	[]
6.	The area under the who A) 0	le normal curve is B) 0.1	C) unity	D) -1	[]
7.	Mean of the binomial A) 0.33	distribution is 6 and va B) 1.33	ariance is 2 then "n" is C) -0.33	D) -1.33	[]
8.		variate z is =			[]
	A) 0	B) $\frac{x+\mu}{\sigma}$	C) $\frac{x-\sigma}{\mu}$	D) $\frac{x-\mu}{\sigma}$		
	A) 8	n distribution is 8, then it B) -8	C) 1	D) -1	[]
10.	The variance of uniform	n probability distribution	$f(x) = \frac{1}{n}$ for $x = 1,2,3$.	<i>n</i> is	[]
	A) 0	B) $\frac{n^2-1}{6}$	C) $\frac{n^2+1}{12}$	D) $\frac{n^2 - 1}{12}$		
11.	The area under the who A) 0	le normal curve is B) 0.1	C) unity	D) -1	[]
12.	The variance of the Nor	rmal distribution is	_		[]
	A) 0	B) σ	C) σ^2	D) 1		
13.	If mean of the binomial	distribution is 3 and vari	iance is $\frac{9}{4}$, the value of 1	ı is	[]
	A) 12	B) 10	C) 11	D)3		
	The mode of normal dis A) 0	B) μ C) $x =$	•		[]
15.		n if $2P(x=0) = P(x=0)$			[]
	·	B) 2	·	D) -4		
	A) 6	n distribution is 6 then B) 5	C) -6	D) 0	[]
17.	The graph of the norma A) 0	I distribution is symmetrial B) $x = \mu$	rical with respect to the li C) $x - \mu$	ne D) 1	[]
18.	If the mean of a poissor A) 8	n distribution is 8, then it B) -8	cs variance is	D) -1	[]
19.	The standard normal co A) shape	urve is about 0 B) standard deviation	C) not symmetrical	D) symmetrica	[al]
20.	-	n distribution with parame			[]
	A) 0	B) 2	C) -2	D) 1		_
	A) 8	distribution is 8 and vari B) 6	C) 7	e distribution is D) 5]
	A) 0	ble normal curve is B) 0.1	C) unity	D) -1	[]
23.	In a Poisson distribution A) 0	n if $3P(x=2)=P(x=4)$ B) 4	4) then the variance is C) 2	D) 6	[]

QUESTION	RANK
QUESTION	DANK

24. Mean of the binomia	al distribution is 6 and a	varianca is 2 than mode	a —	Г	1	
A) 6	B) 5	C) -6	D) -5	L	J	
25. The standard normal	variate z is =	·		[]	
A) 0	B) $\frac{x+\mu}{\sigma}$	C) $x-\sigma$	D) $\frac{x-\mu}{\sigma}$			
	σ	μ	σ			
26. The total area of under	r the standard normal cur	ve is		[]	
A) 0	B) $x = \mu$	C) $x \neq \mu$	D) 1	L	,	
27. If the variance of a bir	nomial distribution is	· 		[]	
A) np	B) -np	C) npq	D) - npq			
		1				
28. The variance of unifor	m probability distribution	n $f(x) = \frac{1}{n}$ for $x = 1,2,3$	3 <i>n</i> is	[]	
		11				
A) 0	B) $\frac{6}{6}$	C) $\frac{n^2 + 1}{12}$	D) $\frac{1}{12}$			
29. If the variance of a po	isson distribution with pa	rameter $\lambda = 2$ is		[]	
A) 0	B) 2	C) -2	D) 1			
30. The mode of normal d	istribution is			[]	
A) 0	Β) μ	C) $x \neq \mu$	D) 1			
31. If mean of the binomia	al distribution is 5 and vo	riance is the value of	of n is	[1	
31. If mean of the omornio		$\frac{1}{3}$, the value $\frac{1}{3}$	71 II 1S	L]	
A) 12	B) 10	C) 11	D) 15			
32. The area under the wh			D) 1	[]	
A) 0	B) 0.1	C) unity	D) -1	r	1	
33. In a Poisson distribution	on if $3P(x=2)=P(x=$ B) 4		D) 6	[]	
A) 0 34. A normal distribution	,	C) 2 d by the mean and	D) 6	Γ	1	
A)shape	B) standard deviation	•	D) not symme	etric	J	
35. If the mean of a binon	nial distribution is		•	[]	
A)np	B) -np	C)npq	D) -npq			
36. If mean of the Poisson			- -	[]	
A) 6	B) 5	C) -6	D) 0			
		UNIT-III				
1. Number of observation	ns are 30 and value of ar		n sum of all valu	ies is	[]
A)15	B)450	C)200	D)45			
2. In arithmetic mean, sur			•		[]
A)0 3. Arithmetic mean is 25	B)1 and all sum of observati	C)2 ions is 350 then number	D)3 of observations	are	Г	1
A)14	B)450	C)200	D)45	uic	L	J
4. Arithmetic mean is 12	and number of observa	tions are 20 then sum of	f all values is		[]
A)15	B)450	C)240	D)45		r	1
5. Arithmetic mean is mu A) absolute mean dev	=	mean absolute deviation		e	L	J
C) relative mean devi	·	ative median deviation				
5. The arithmetic mean	· · · · · · · · · · · · · · · · · · ·		s first multiplie	d by 2 a	nd the	en
•	what is the mean of ne				[]
A)20	B)25	C)40	D)45		-	
6. Sum of mode and me	edian of the data					<u> </u>
Probability & Statist	ics					

			QUESTION BAI	NK 2	2019
A)26	B)31	C)36	D)25		
7. The arithmetic mean c A)5.5	of the first ten whole n B)5	umbers is C)4	D)4.5	[]
8. Find mode value of 2,3,4	,	C) +	D)4.3	[]
A)3	B)4	C)2	D)5	r	1
9. Find median of 1,2,3,4, A)5	5,6,7 B)4	C)2	D)7	[]
10. Moments about μ_1	,	,	·	[]
A)1 11. $\beta_1 =$	B)0	C)2	D)45	г]
	μ_{\bullet}^2	μ^2		L	J
A) μ_1/μ_2	B) $\frac{\mu_3^2}{\mu_2^3}$	C) $\frac{\mu_1^2}{\mu_2^3}$	D)None		
12. $\beta_2 =$	• 2	• 2		[]
A) μ_1/μ_2	B) $\frac{\mu_3^2}{\mu_2^3}$	$C)^{\mu_4}$	D)None		
$A/\mu_1/\mu_2$	$\frac{1}{\mu_2^3}$	C) $\frac{\mu_4}{\mu_2^2}$	Dinone		
13.If $\beta_2 = 3$ and $\gamma_2 = 0$ the		CN 1	DIM	[]
A)Mesocurtic 14.Find mode value of 2,3	B)Platykurtic 3.4.5.7.9.5.1	C)Leptokurtic	D)None	[]
A)3	B)4	C)2	D)5		
15.Find median of 1,2,3,4 A)5	,5,6,7,8,9 B)4	C)2	D)7	[]
16. $\mu_1^1 =$	D) 4	C)2	D)I	[]
_	_, -			L	J
A) $x - A$ 17.If $\beta_2 < 3$ and $\gamma_2 < 0$ th	B) $x + A$	C) <i>x</i>	D)0	[]
	B)Platykurtic	C)Leptokurtic	D)None	L	J
18. Find β_1 where $\mu_3 = 3$,		G) 0 2	D)0 224	[]
A)1.125 19.Find mode value of 3,4	B)0.59 1547294	C)0.2	D)0.224	ſ	1
A)3	B)4	C)2	D)5	L	J
20.If $\beta_2 > 3$ and $\gamma_2 > 0$ th		C)I antalyuntia	D)None	[]
A)Mesocurtic 21. Find β_1 where μ_3 =4,	B)Platykurtic $u_2 = 3$	C)Leptokurtic	D)None	[]
A)1.125	B)0.59	C)0.2	D)0.224		
22.Find median of 1,2,3,4 A)5	,5 B)4	C)2	D)3	[]
_	ŕ	C)2	<i>D</i>)3		
23.Find μ_1^1 where $x=5$ a A)15	and A=5 B)450	C)200	D)10	[]
	ŕ	C)200	D)10	_	
24.Find μ_1^1 where $x = 50$ A)15	and A=5 B)45	C)200	D)10	[]
25. Find β_1 where $\mu_3 = 5$,	,	C)200	D)10	[]
A)1.125	B)0.59	C)0.2	D)0.224	-	-
26.Find μ_1^1 where $\bar{x} = 15$	and A=5			[]
A)15	B)45	C)200	D)10		
27.Find β_1 where $\mu_3 = 7$, A)1.125	$\mu_2 = 6$ B)0.59	C)0.2	D)0.224	[]
28.Increase in one variable	,	,	· ·	[]
A)Positive	B)Negative	C)Uncorrelated	D)None	-	4

_					
29. Find μ_1^1 where \bar{x}	=10 and A=10			[]
A)15	B)45	C)0	D)10		
30. Find μ_1^1 where .	- v -50 and A-40			[]
A)15	B)45	C)2	D)10	L	J
*	· · · · · · · · · · · · · · · · · · ·	first 12 whole number	*	[1
A)5.5	B)5	C)6.5	D)4.5	L	J
,	,	se the other variable the	,	[]
A)Positive	B)Negative	C)Uncorrelated	D)None	-	-
		e the other variable ther		[]
A)Positive	B)Negative	C)Uncorrelated	D)None	r	,
		le then the correlation is		[J
A)Positive 35.Rank correlation is	B)Negative	C)Uncorrelated	D)None	Г	1
A)a	Β)β	C)γ	D)ρ	L	J
36. Correlation coeffi		9)1	2)[1	1
A)α	Β)β	C)r	D)p	-	-
37. Find mean value of				[]
A)2.4	B)2.5	C)2.6	D)2.7		
38.Regression coeffic	•			[]
A) $r \frac{\sigma_x}{\sigma_y}$	B) $r \frac{\sigma_z}{\sigma_y}$	C) $r \frac{\sigma_y}{\sigma_x}$	D)0		
$\sigma_{_{\mathrm{y}}}$	$\sigma_{_{\mathrm{y}}}$	σ_{x}	2)0		
39. Regression coeffic	cient r is			[]
$A)b_{xy}Xb_{yx}$	B) b_{xy} - b_{yx}	C) $b_{xy} + b_{yx}$	D) b_{xy}/b_{yx}		
40. Regression coeffic	cient b _{yx} =			[]
Δ) $r \frac{\sigma_x}{\sigma_x}$	\mathbf{R}) $r\frac{\sigma_z}{\sigma_z}$	C) $r \frac{\sigma_y}{\sigma_y}$	D)0		
A) $r \frac{\sigma_x}{\sigma_y}$	B) $r \frac{\sigma_z}{\sigma_y}$	C) $r \frac{\sigma_y}{\sigma_x}$	<i>D)</i> 0		
,	,				
		<u>UNIT-IV</u>			
	2		_	_ 2	
$1. If y = a_0 + a_1$	$x + a_2 x^2$ then the th	ird normal equation by	least squares method is	$\sum x^2 y =$	-
A \	. 5 2 5 5	2 . 5 3 . 5	4.	L	J
A) $na_0 + a_1 \sum x$	$+a_2 \sum x^2$ B) $a_0 \sum x^2$	$x^2 + a_1 \sum x^3 + a_2 \sum x$	· · · · · · · · · · · · · · · · · · ·		
$C)a_0 \sum x + a_1 \sum$	$x^2 + a_2 \sum x^2$	D) $a_0 \sum_{x=0}^{1} x^2 + a_1 \sum_{x=0}^{2} x^4 + a_2 \sum_{x=0}^{2} x^4 + a_3 \sum_{x=0}^{2} x^4 + a_4 \sum_{x=0}^{2} x^4 + a_5 \sum_{x=0}^{2} x^2 + a_5 \sum_{x=0}^{2} x^2 + a_5 \sum_{x=0}^{2} x^2 + a_5 \sum_{x=0}^{2} x^2 + a_5 \sum_{x=0}^{2} x^$	$-a_2 \sum x^3$		
$2. \text{ If } y = a + bx$ $ic \nabla y = a + bx$	men mst normal eqt	nation by least square n	nemou	Г	1
$is \sum y = $	$na + h \sum r C \sum r =$	$-b\sum x^2$ D) $a\sum x$	$r + h \sum r^2$	L	J
·		nd normal equation is	1 1 D Z X	Г	1
A) $a \sum x^2 + h \sum x^2$	$r^3 + c \sum r^4$	B) $na + h \sum x + c \sum x^2$	2	L	J
C) $a \sum x + b \sum x$	$r^2 + c \sum x^3$	B) $na + b\sum x + c\sum x^2$ D) $na + b\sum x^2 + c\sum x^2$	x		
			least square method is \sum	$\nu = \Gamma$	1
		B) $a \sum x + b \sum x^2 + c$		<i>,</i> .	
C) $na + b \sum_{x} x$		$D)a_0\sum x + a_1\sum x^2$	_		
$5.\text{If }\sum x_i=15,\sum$	$y_i = 30, \sum x_i y_i = 1$	10, $\sum x^2 = 55$ and $y =$	$= a_0 + a_1 x$ then $a_0 =$	[]
A)2.2	B)1.52	C)1.2	D)0		
6. If $y = a_0 + a_1$	x and $\sum x = 15$, $\sum y$	$=30.\sum xy=110,\sum x$		[]
A)1.89 B))2.5	C)1.2	D)2		
7. If $y = a + bx$	$+ cx^2$ then first norm	nal equation of below of	data is	[]
X 0 1 2	3 4				

y 1 1.8 1.3 2.5 6.3		
A) 12.9=5a+10b+30c B) 15=5a+10b+31c		
C) 15=5a+10b+29c D) 35.1=5a+10b+28c		
8. If $y = a + bx + cx^2$ then second normal equation of below data is	[1
X 0 1 2 3 4	L	J
y 1 1.8 1.3 2.5 6.3		
A) 37.1=8a+28b+100c B)35.1=10a+28b+10c		
C) 37.1=10a+30b+100c D)37=10a+10b+28c		
9. The power curve is	[]
A) $y = a + bx + cx^2$ B) $y = ae^x$ C) $y = ax^b$ D) $y = a + bx$	L	J
10. The probability of committing type-I error is denoted by	[]
A) α B)1- α C) β D)1- β	L	J
11. The probability of committing type-II error is denoted by	[]
A) α B)1- α C) β D)1- β		_
If n=144, σ =4&x=150 then 95% confidence interval for μ is	1]
A) (149.35,150.65) B)(139.7,140.2) C)(172.1,182.12) D)(170.1,182.2)		-
12. In testing of significance for single proportion, then test statistic is	[]
		-
A) $\frac{P-p}{\sqrt{\frac{PQ}{n}}}$ B) $\frac{p-P}{\sqrt{\frac{pq}{n}}}$ C) $\frac{P-P}{\sqrt{\frac{PQ}{n}}}$ D) $\frac{P-p}{\sqrt{npq}}$		
13. Whether the test is one tailed or two tailed depends on hypothesis	[]
A) Null B) Alternative C)Simple D)None	L	J
14. When null hypothesis is accepted, then the result is said to be	[]
A) Non significant B) Significant C) Error D) None	L	J
15. When null hypothesis is rejected, then the result is said to be	[]
A) Non significant B) Significant C) Error D) None	L	J
16. If $\bar{x} = 116$, $\mu = 120$, $\sigma^2 = 225 \& n = 100$ then Z=	[]
A)2.2 B)0.92 C)1.85 D)3.1	L	J
17. Amoung 900 people in a state 90 are found to be chapathi eaters, The 99%		
Confidence interval for the true proportion is	[]
A) $(0.07,0.13)$ B) $(0.8,0.12)$ C) $(0.8,1.2)$ D)None	-	-
18.A hypothesis is true, but is rejected, this is an error of type	[]
A)I B)II C)I&II D)None		
19. A hypothesis is false, but is accepted, this is an error of type	[]
A)I B)II C)I&II D)None		
20. The Z-test is applicable when the sample sizes are	[]
A) Small B) Equal C) Large D)None		
21. Normal curve varies from	[]
A)- ∞ to ∞ B) 0 to ∞ C) - ∞ to 0 D) None		
22. The value of $Z_{\underline{\alpha}}$ at 5% level of significance is	[]
A)1.65 B)1.96 C)2.57 D)2.5		
23.In testing of significance for single mean then the test statistic is	Γ]
$\bar{X}^{-\mu}$ $\bar{X}^{-\mu}$ $\bar{X}^{-\mu}$ $\bar{X}^{-\mu}$ $\bar{X}^{-\mu}$ $\bar{X}^{-\mu}$	L	J
A) $\frac{\lambda - \mu}{\frac{\sigma}{\sqrt{n}}}$ B) $\frac{\lambda - \mu}{\frac{\sigma}{\sqrt{n}}}$ C) $\frac{\lambda - \mu}{\frac{\sigma}{n}}$ D)None		
A) $\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ B) $\frac{X-\mu}{\frac{\sigma}{\sqrt{n}}}$ C) $\frac{X-\mu}{\frac{\sigma}{n}}$ D)None 24.The N.c is about Z=0	[]
A)Symmetric B)Assymmetric C)Uniform D)None	-	
25. A sample of size 100 is taken whose standard deviation is 5. What is the maximum	error w	ith
probability 0.95	[]
A)0.8 B)0.7 C)1 D)0.98		_
26.If n=100, σ =5.1, \bar{x} =21.6, 95% confidence interval for population mean μ is	[]

	A)(20.60,22.59) B)(80.23,83.76) C)(2.6,2.2) D)None 27.Find the value of the finite population correction factor		
	for $n=10\&N=100$	[]
	A)9.9 B)0.99 C)0.09 D)None 28.A sample of size 64 and mean 60 was taken from a population whose S.d is10. Fin	d 95%	
	confidence interval for the mean	[]
	A)(55.57,62.45) B)(57.55,45.62) C)(57.55,62.45) D)None 29. The value of $Z_{\frac{\alpha}{2}}$ at 1% level of significance is	[]
	A)2.58 B)1.96 C)1.57 D)2.5		
	30. The value of Z_{∞} at 1% level of significance isA)2.98 B)2.33 C)1.57 D)1.96	[]
	31. The value of Z_{∞} at 5% level of significance is	[]
	A)2.98 B)2.33 C)1.64 D)2.51 32.If $n > 30$,distribution is used	[1
	A) Z-test B)F-test C)t-testD) χ -test		,
	33.In testing of two means the test statistic is	[]
	A) $\frac{x_1 - x_2}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n}}}$ B) $\frac{x_1 - x_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ C) $\frac{x_1 - x_2}{\sqrt{\frac{\sigma_1^2}{n_1} - \frac{\sigma_2^2}{n_2}}}$ D) $\frac{x_1 + x_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$		
	v 1 2 v 1 2 v 1 2	r	1
	34. If $n < 30$,distribution is used A) Z-test B)F-test C)t-testD) χ -test	[J
	35.If $n = 40$, $\bar{x} = 59.1$, $\sigma = 5.2$ $\mu = 57.4$ then $z =$	[]
	A) 2.06 B)3.06 C)4.06 D)0.06		
	36. If $n = 400$, $\bar{x} = 40$, $\sigma = 10$, $\mu = 38$ then 95% confidence Interval for population	mean 1s-]
	A) (2.06,0.98) B)(39.02,40.98) C)(2.06,0.98) D)(2.06,0.98)	L	1
	37.If $n_1 = 42$, $\overline{x_1} = 15$, $n_2 = 80$, $\overline{x_2} = 11.5$, $\sigma_1^2 = 2.0$, $\sigma_2^2 = 1.5$ then $Z =$ A)2.58 B)1.58 C)13.58 D)20.58	[]
	38.If n=5 $\sum x = 15$, $\sum y = 204$, $\sum xy = 748$, $\sum x^2 = 55$, and y=a+bx then by the met	thod of le	_
	squares, a= A)0 B)1 C)2 D)None	L]
	39.If n=5 $\sum x = 15$, $\sum y = 204$, $\sum xy = 748$, $\sum x^2 = 55$, and y=a+bx then by the measure as $y = 15$.	thod of le	east
	squares, b= A)0 B)13.6 C)2 D)None	L]
	40.If $n=9\sum x = 72$, $\sum y = 36$, $\sum xy = 282$, $\sum x^2 = 588$, and $y=a+bx$ then by the method of the squares $a=1$	hod of lea	ıst 1
	squares,a= A)8 B)9 C)10 D)20	L	J
	<u>UNIT-V</u>		
	<u> </u>		
1.	A t-curve isabout 0 A) Symmetric B) Asymmetric C) Uniform D)Multime	[odal]
2.	Chi-square distribution	[]
3	A) Symmetrical B) Continuous C) Uniform D)Multime In a t-distribution of sample size n, the degrees of freedom are	odal []
٥.	in a constitution of sample size ii, the degrees of freedom die	L	1

Probability & Statistics

				QUESTION BANK	2019
	A) <i>n</i>	B) <i>n</i> -1	C) <i>n</i> +1	D) $n-2$	
4.	If $\bar{x} = 17.85$, $\mu = 18.5$	5. s = 1.955 and the san	nple size is 14 then $ t =$]]
	A) 1.199	B) 2.199	C) 3.199	D) 4.199	J
5.	The deviations of obs A) Chi-square	served frequencies from B) F	m expected frequencies are C) t	used in _test [D) None]
6.	·	= 0.42 and the sample		[]
	A) 4.29	B) 3.29	C) 2.29	D) 1.29	
7.	If $\bar{x} = 31$, $\bar{y} = 28$, $s =$	$2.13, n_1 = 6$ and $n_2 = 7$	then t =]]
, -	A) 1.53	B) 2.53	C) 3.53	D) 4.53	j
8.	If $S_1^2 = 666.7$, $S_2^2 = 1$	109 33 then F =]	1
٠.	A) 0.66	B) 1.66	C) 2.66	D) 3.66	ı
9.	If $S_1^2 > S_2^2$ then F=_	*	0, 2.00	[]
		B) $\frac{S_2^2}{S_1^2}$	C) $\frac{S_1}{S_2^2}$	D) $\frac{S_2}{S_1^2}$	
10	Range of F-distribution \mathbf{A}) 0 to ∞	on is B) $-\infty to \infty$	C) $-\infty to 0$	D) None]
	A) 0.0∞	$\mathbf{b}) = \omega_{io} \omega$	$C_{ij} = \infty_{ij} U_{ij}$	D) None	
11.	In a goodness of fit to A) k-1	est, the degrees of freed B) k+1	dom are C) n-k	D) n+k]
12	*	le to samples for which	,	<i>D)</i> II+k []
12	A) = 30	B) $>$ 30	C) <30	D) None	J
13		•	ty of population variance	[]
	A) Chi-square	B)t	C) F	D) None	
14	=	oution is similar to that		D) N 1]
	A) Chi-square	B) Uniform	C) t	D) Normal	
15.	If $\bar{x} = 46, \bar{y} = 57, S =$	$= 11.03, n_1 = 5$ and $n_2 = 1$	7 then $ t =$]]
	A) 0.7	B) 1.7	C) 3.7	D) 4.7	
	,	,	,	,	
16	If $S_1^2 = 1109.33$, $S_2^2 =$	= 666.7 then F =]]
	A) 0.66	B) 1.66	C) 2.66	D) 3.66	
17.	If $S_2^2 > S_1^2$ then F=_			[]
		B) $\frac{S_2^2}{S_2^2}$	C) $\frac{S_1}{S_2^2}$	D) $\frac{S_2}{S_1^2}$	
18	The F-distribution is	~1	~ 2	~1	1
10.	A)Uniform	B) Continuous	C) Discrete	D) None	J
19	A Chi-square is	,	C) Discrete	D) None	1
1)	A) Positive	B) Left	C) Right	D) Negative	J
20.		ribution are always	, 8	[1
	A) Right	B) Left	C) Positive	D) Negative	_
21.	Which distribution is	used to test the equali-	ty of population means]]
	Probability & Statisti	cs			

			QUESTION BAN	١K	201
A) Chi-square	B) F	C) t	D) None		
$t_{1-\alpha} = $		C) 4	D) 4	[
A) t_{α}	B) $-t_{\alpha}$	C) $t_{\alpha-1}$	D) - $t_{\alpha-1}$		
3. If $\bar{x} = 17.85, \mu = 1$	18.5, s = 1.955 and the sa	mple size is 10 then $ t =$		[
A) 0.05	B) 1.05	C) 2.05	D) 3.05		
4. If $\bar{x} = 46, \bar{y} = 57, \bar{x}$	$S = 11.03, n_1 = 6 $ and $n_2 =$	7 then $ t =$		[
A) 0.78	B) 4.79	C) 3.79	D) 1.79		
5. If $S_1^2 = 1100.99$, $S_2^2 = 1100.99$	$r_{2}^{2} = 1200 \text{ then } F =$			[
A) 1.09	B) 2.09	C) 4.09	D) 3.09	_	
. In a t-distribution of	of sample size n, the degr	rees of freedom are		[
A) <i>n</i>	B) $n-1$	C) $n+1$	D) $n-2$		
. The range variable	chi-square assumes only	yvalues		[
	, 0	C)Non-negative	D) Zero		
$F_{1-\alpha}(\nu_1, \nu_2) = \underline{\hspace{1cm}}$				[
A) $F_{\alpha}(v_2, v_1)$		C) $F_{\alpha}(v_1, v_2)$	_{D)} 1		
A) $\Gamma_{\alpha}(V_2, V_1)$	$F_{\alpha}(v_1,v_2)$	C) $\Gamma_{\alpha}(v_1, v_2)$	D) $\frac{1}{F_{\alpha}(\nu_2, \nu_2)}$	(1)	
The t test is emplie	abla to samples for which	h n ia		г	
A) = 30	able to samples for which B) >30	C) <30	D) None	[
,	tion is	•	D) None	[
· ·	B) $-\infty to \infty$	$C) -\infty to 0$	D) None	L	
,	,	-,	,		
	s used to make inference	s for one population stand	ard deviation	[
A) Chi-square	B) F	C) t	D) None		
7 7 7 0 G ² 00	~ . II			-	
2. If $\bar{d} = 2, S^2 = 30,$	1.1			[
A) 0.82	B) 3.82	C) 2.82	D) 1.82		
3. The total area und	er a t-curve equals			Г	
A) 0	B) -1	——————————————————————————————————————	D) None	L	
	•	s for one population stand	<i>'</i>	Γ	
A) Chi-square	B) F	C) t	D) None	L	
_					
5. If $\bar{x} = 1.77, \bar{y} = 1.9$	$93, S = 0.157, n_1 = 6$ and $n_1 = 6$	$a_2 = 6 \text{ then } t =$		[
A) 0.77	B) 2.77	C) 3.77	D) 1.77		
TC 92 40 22 =	004 - F			r	
5. If $S_1^2 = 10$, $S_2^2 = 9$.		G) 2.610	P > 4 ==	[
A) 1.018	B) 2.018	C) 3.018	D) 1.77	_	
		depends onh		[
A)null	B) Alternate	C)Simple	D)none	_	
8. If arrival rate is 3	per hour &service rate is	s 5 per hour then traffic in	tensity is		

OUESTI	IVU	DΛ	NIV
OUESTI	מוטו	$\mathbf{D}H$	/IVI

A) $\frac{4}{5}$

B) $\frac{3}{2}$

C) $\frac{3}{5}$

D) none

39. The shape of t- distribution is similar to that of

[

A) Chi – square distribution

B) F- distribution

C) Normal distribution D)none

40. If null hypothesis is accepted, then the result is said to be

2019

A)null significant

B)Significant

C)Error

D)none